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"ABSTRACT

The resultant is applied to the problem of weights in cyclic codes. The binary code
arising from the projective plane of order 10 (if it exists) is examined. T-design decoding
"is discussed in general. and the special case of the (48, 24) binary extended quadratic resi-
due code is worked out in detail. The (60, 30) ternary extended quadratic residue code is
proved to yield new 5-designs. Miscellaneous results include study of the question whether
Steiner triple systems support linear codes.
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PART I

A RESULTANT APPROACH TO CYCLIC CODES

We begin with an elementary remark on weights occurring in some cyclic codes. Let

n be prime and consider a cyclic code of length n over GF(q) = F. Let C be a primitive n-th

root of 1. Then K = F(C) is a field of degree ( K: F] = the multiplicative order of q modulo

n. Let us suppose [K: F] = e# and let L be the intermediate field as indicated:

Ke1:F
The i-th coordinate of a vector in the cyclic code is expressed as:

T(c 1cel) + T(c 2•e2i) +.." + T(c rri)

eo-I
where the e,, ... , er are in different orbits under multiplication by 1, q, ... , qe•- in the

integers mod n. This means that there is the usual polynomial f(x), depending on c

Cr, such that the degree of f(x) is less than n and its coefficients are in K, and the i-th

coordinate of the corresponding code-vector is f(" ). f(x) is the formal trace

T(cxl + ... + with exponents on x rAuced mod n.

The number of 0' s in the code-vector is the degree of the greatest common divisor
(g. c.d.) 1x-, f(x).

Now suppose we restrict the c1 , ... , cr to lie in L. Then f(x) has coefficients in L;

and, therefore, the g.c.d. must consist of some divisor of x -1 over L. Under our assump-

tions, xn-I factors into x-1 and a number of other irreducible polynomials all of degree 4.

Therefore, the g. c. d. has degree X0 or X0 + 1. In other words, when the c1 , ... , cr are in

L, the weight of the corresponding code-vector is congruent mod 0 to n or n-1.

We can determine which of these possibilities arises to an extent. Let q = p for a

prime p.

Case 1. p divides. Then f(l) 0 as TK/F(c) = L/F(c) for ccl. Thus, x-l always

divides the g. c. d., so here the weights are n-1 mod 4.

FR70-3N I-i



Case 2. p does not divide 5. Then both cases arise because there are always c in L

with "small" trace 0 and non-0, respectively.

This completes our first remark, and we now analyze the g. c. d. more carefully and in

general, by means of some elementary and very classical algebra.

The greatest common divisor g(x) of the polynomials g(x) and h(x) over the field F is

defined as the monic polynomial over F of highest degree dividing both f(x) and h(x). Unless

f(x) = h(x) = 0, it is unique; and it exists as the polynomial of lowest degree among those

of the form r(x) f(x) + s(x) h(x) as r(x) and s(x) run over F[x]. This characterization of

the g. c.d. shows that it remains uncharged if the field F is extended. These facts follow

immediately from the Euclidean algorithm. The following additional properties hold:

Let r(x) f(x) + s(x) h(x) = g(x). (1)

with the notation as above. On dividing by g(x), we see that r(x) and s(x) are relatively prime.

Also, there exist r(x) and .s(x) satisfying (1) such that

deg r(x) <deg h(x) and deg s(x) < deg f(x) (2)

One proves %_2) easily with the Euclidean algorithm. Using (2) and dividing (1) by g(x), one

sees that we can choose r(x) and s(x) in (1) so that

deg r(x) <deg h(x) - deg g(x)

deg s(x) <deg f (x) - deg g(x)

Suppose now we are given the polynomials f(x) and h(x) explicitly as

m m-I
f(x)= aox + alx +... + am

h(x)= boxn + blXn-1 + bn

Using (2) we could then set up m + n linear equations for the unknown coefficients of r(x) and

s(x), with the right-hand side being the unknown coefficients of g(x). If we ordered the equa-

tions just so, we would have for the (square) matrix M of coefficients (of size m + n)

1R
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a a a 0 ... 0

0 a a .. a ... 0
0 m

n rows

0. . 0 b° b ... bn
o 0o... b b b

0 1 * no ... b° b1  .. bn 0

m rows

b bI... b 0 ... 0 (4)

Then for arbitrary polynomials r(x) and s(x) of degrees less than n and m, respectively, the

coefficients of a polynomial of trhe form r(x) f(x) + s(x) h(x) arise as

ri. S (5)
hi Io Io hi hi lo

in an cbvious notation for the polynomial coefficients as row-vectors.

The degree of g(x). Number the columns of M from the right, starting with 0. Suppose

the 6-th column has the property that it and the columns to the left of it span all the columns

of M, and that this is the left-most such column. The 8 is the degree of the g.c.d. g(x).

When 8 = 0, M is non-singular and g(x) = 1.

The reason for this is that a non-0 set of coefficients ri and si on the left of (5) can be

chosen to annihilate all columns to the left of the 6-th, but not the 6-th column. This choice

yields the maximum string of consecutive 0' s on the high-degree end of the right-hand side

of (5) without producing all 0' s there. (Incidentally, this shows the uniqueness, up to a con-

stant factor, of r(x) and s(x) in (1), satisfying (2), because the annihilator of the subspace of

columns of co-dimension 1 has dimension 1.)

We now look at the foregoing in terms of the matrix M. (This is adapted from [ 2] and

apparently goes back at least to Bocher [ 1], when it was all probably very standard.)

Suppose the 6-th column is defined as above and that we consider the small matrix M8 (of

m + n -26 rows and columns) obtained by peeling off 6 columns from each side and 6 rows

from top and bottom of M. Because we know there are r(x) of degree at most n-5 and s(x) of

FR70-3N 1-3



degree at most m-6 satisfying (1), we know that the columns of M are linearly independent.

Therefore, det M. * 0.

0

n ROWS

i n d0 s c a s op�anal�lhecoums Wh

fb b

b 0 0 b n 0

If, however, we expand M• to Mj by removing only j rows top and bottom and on each

side, with j < 8, then det Mj 0 simply becasue the 6-th column and those to the left of it

span all the columns. We have proved:

. LEMMA. The largest "central" submatrix of M which is non-singular has m + n - 26
rows and columns, where 6 is the degree of the g. c.d. of f(x) and h(x).

We naow apply this result to coding theory. It really provides a general way to restate

the minimum-distance problem for cyclic codes.

1-4 FR70-3N



in the general cyclic code the code-vectors (a0 a.. an_1) are given as( (io2 f(ý),
•..,f(n-), being a primitive -th root of 1 over GF(q) = F. The polynomial f(x) is

essentially a sum of traces from K = F(C) = GFWq) to F, namely

f1 eT(c l e r)
f(x) = T 1x + c2x + ... + Cr , c1, ... , CrEK (6)

where by T(cxe), we mean cx+ + q2  (q2e)+ .. + cqs1 (qs-le)

wiere (qie) means (here ornly) the least positive residue of qie mod n. f(x) depend on cl,

cr. The code-vector corresponding to cl, ... , Cr, has weight n-6, where 6 is the

number of roots of f(x) (counted without multiplicity) among 1, C, ... , that , the

weight of the code-vector is n-6, where 6 is the degree of g.c.d. (xn-1, f(x)). ThLs remark

characterizes, in principle, the weights in the cyclic code as n-6, where 6 takes the values,

for the various c,, -I Cr' for which M6 is the largest non-singular "central" submatrix A

of M. In principle, we have the several determinants det M, det M., det M2, ... as poly-

nomials in Cl, ... , cr. Some of these polynomials vanish identically as functionc on

K X ... X K and me do not. The latter correspond to the weights of the code-vwctors,

subject to our > unma.

We can simplify the matrix (4) in this cyclic code case by adding columns so as to

eliminate the -1' s in the bottom m rows, noting that h(x) = x - 1. Then we have the

circulant

n-m-1 zeros
a 0. . . 0aa 0  . am-_

a m_1 0 a 0 a. am-2
am-2 0. am-3

ao

a0  0

0
• 0

0 ... 0 a0 ... amI

FR70-3N 1-5



as the upper right-hand n by n matrix in M as modified. The lower m rows of the modified

M may be neglected now because they are

m n

0

1 0

The question now becomes: fox which values of the a.' s are the matrices obtained by

removing the top 8 rows and the right- hand 6 columns from M' non-singular? We rotate M'

through 0 degrees to put it in the form

0. . . 0 a0  a 1  a . .am

0

M" a0  a0

a1

"am 0 . . . 0 a0  am-1

which is constant along diagonals perpendicular to the main diagornal. Such a matrix is

called persymmetric. The result on weights now takes the following form.

PROPOSITION. With the a1' s in the form given by (6), the weight w occurs in the code

if and only if for some choice of the ai' s, the submatrix of M" consisting of the first w rows
and columns is non-singular and every larger such submatrix is (for the same a i s) singular.

Here we must point out the existence of the paper [3] on persymmetric matrices.

Although it is largely concerned with how many persymmetric matrices there are of various

types, there is a singularity criterion which amounts to a reduction to a smaller persym-

metric matrix, Despite strenuous efforts, however, we were not able to use this criterion

in a satisfactory way. Even on the (7, 3) binary cyclic code this method seemed difficult.

A reader interested in pursuing this approach, however, might well want to examine this

paper, for some modification of Daykin's methods might yield results more appropriate to

this problem than those we were able to draw from it.

1-6 FR70-3NiI
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F
We did use Daykin' s reduction method to prove the known result that in the (31, 10) cyclic

code (with primitive 31st roots of unity C and C5 as roots of the recursion polynomial), there

are only the three weights 12, 16, and 20; and at the same time we calculated the weight

distribution. This required considerable effort, however, and in trying the method for some

codes over three and four symbols, and larger binary codes, we were forced to give up.

Working directly from the Proposition, however, we give simple proofs of the weight

properties of the maxiimal-lerigth code and of the BCH bound for cyclic codes.

The general BCH bound for cyclic codes may be stated as follows. In (6), choose r

so that the degree of xrf(x), when reduced modulo xn-1, is minimum, say m. Then the BCH

lower bound on the weight in the code is n-in. The proof using our Proposition is that for

w < n-m, the upper left-hand w X w submatrix in M" is singular for all choices of the ai' s.

k- 12

For the binary maximal-length code, x-f(x) = , C2 x 2 -, for n = 2 k -1. The rows
0

of the circulant matrix M" can then be represented as the polynomials r(x), xr(x), .,.,

Sx2k2 r(x), where the top row is r(x) = xlf(x),

C2k-1 ~2k-1l ++r1C - x 2 -l1 + ... + C = r(x)

and x r(x) is reduced mod x n-1. Now, numbering the rows 0, 1, 2, 3 ... , let us multiply

the 0th, or top row, by 1, the Ist row by C, and the 2nd by C2, the 4th by C4 , and in general,

the 2th row byC for i = 0, 1, ... , k-1. We now add these chosen rows to find

1 22 44 2k- 2 k-1
1 (f(x)+ Cxf(x) + C x f(x)+ C x f(x) + ... + C x f(r))

1 2
M (f(x) + f(x))x

1 (Cx + C x 2)
X

I (Cx + Cx) = 0 (mod x 2k'-1).x

This shows not only that 1Mi" is singular but also that every upper left-hand square

submatrix after that of size 2k_1 is singular (since the last row involved in the linear combina-

tion is that numbered 2 k-). Therefore, the only non-0 weight is 2 k1

FR70-3N 1-7



References

[11 Maxime Bocher, Introduction to Higher Algebra, MacMillan, New York; 1907.

[2] M. P. Epstein, "The Use of Resultants to Locate Extreme Values of Polynomials,"
SIAM J. Appl. Math., Vol. 16, pp. 62-70; 1968.

[31 David E. Daykin, "Distribution of Bordered Persymmetric Matrices in a Finite Field,"
J. Reine Angew. Math. 203 (1,,UG), 47-54.

1-8 FR70-3N



PART II

ON THE POSSIBILITY OF A PROJECTIVE PLANE OF ORDER TEN

We report here on work in progress since September 1969, a report of which was given

ac Oberwolfach, Germany at the conference "Combinatorial Aspects of Finite Geometries,"

March 30 - April 4, 1970.

1. Self-Orthogonal Designs. I

Let (SCi• be a t-design withISH - v and I D I = k for D in J. Thus, every

t-subset of S is contained in precisely X members of (V),where X is some fixed integer. We

say that (S, q) is self-orthogonal if IDnE I is even for every D and E in &). In particular,

then, we find that k is even by taking D = E.

Next, we determine all possible self-orthogonal designs with X = 1; i. e., all
possible self-orthogonal Steiner systems. Let (S, ) be such a system. For t =, is

simply a partition of S, and whenever v = IS I is even, there is precisely (up to isomorphism)

one such design for every factorization

v = km

with k even. We discard this trivial case and assume t > 1. For Do C./set

Nt_ 1 I 1D e V.; IDnDo0  = t-l1 I

An easy counting argument shows that

Nt-l ( 'kt_ i

or

N k v-kNt-I =tI k-t+l

For t even, Nt_1 is necessarily 0 and this case cannot, obviously, occur upless v = k - an

even more trivial possibility which we again discard. So, we may now assume that t is odd

and t > 3. If t > 3 we can, by contraction, reduce to a self-orthogonal design with t = 3,

having determined these, all other self-orthogonal designs will be extensions. Here Nt_ =

N2 = 2k-" (An extension of a Steiner system of type t-d-n is one of type (t + e) - (d + e) -

(n + e) such that the contraction of the latter on e points is the original system.)

I



Set

N, {De(J'; IDfD 0 I

where D 0 E VA Again, an easy counting argument shows that

N (v-l) (v-2) _ii - 2N
1 =k-2) 2

Now, N1 must be 0. Hence we conclude that

(k) (k-i) (v-k) kI(v- 1)(v) _-
(k-2) I(k-i) (k-2) 1

or that

(k-1) 2(v-k) =v -vk2 - 3v + 3k

or

v~2
v = k - 3k + 4

Thus, v is determined by k. (In the more general case a similar argument shows that v

is determined Iby k and t.)

The fact that we have a Steiner system implies that k-2 divides v-2, that (k-i) (k-2)

divides (v-i) (v-2) and that k(k-1)(k-2) divides v(v.-i)(v-2). But v-2 = (k-i) (k-2) and hence

we conclude that k divides v (v-i); thus k divides 12. Thus, since k is even, k is 2, 4, 6,

or 12. For k = 2, v is 2, a trivial case. The cases k = 4 and k = 6 are well a-derstood;

the case k = 12 is the only undecided case. Because of known extension properties which

come from easy counting arguments we are able to sum up the preceding discussion in:

THEOREM 1. Let (S, ) be a self-orthogonal Steiner system with parameters t, k,

and v. Suppose t > 1 and k <v. Then one of the following four cases occurs:

a. t = 3, k = 4, v = 8 and the design is the unique extension of the projective plane

of order two or, in codingterms, the quadruple system associated with the (8, 4) extended

Hamming code.

b. t = 3, k = 6, v = 22 and the design is the unique extension of the projective

plane of order four or, in other words, tlh design associated with the Mathieu group M22 .

11-2 FR70-3N



c. t = 5, k = 8; v = 24 and the design is the unique Steiner system with those

parameters, the one associated with M2 4 . Note thai: this design is that of b. twice extended;
and it is the only self-orthogonal Steiner system with t > 3 since the only other case is

d. t = 3, k= 12, v= 112.

It is, or course, unknown at this time whether a Steiner system with the parameters

of a. exists. If it does, it is necessarily an extension of a projective plane of order ten

and has no further extensions. It was this numerical anomaly that titillated our interest in

the possibility of a projective plane of order ten being constructible within the framework of

algebraic coding theory. Our discussion to follow was motivated by cases a. and b. above.

The preceding discussion also affords a proof of the following.

COROLLARY. The only extendable projective planes are those of order two, four, and

possibly ten.

Proof. Such an extension is easily seen to be a self-orthogonal design with t - 3.

(One simply computes N1 and sees it is 0.)

2. The Linear Span of a Projective Plane.

Let (S,") be a finite projective plane of order n. Thus, (S, is a 2-design
with x = 1, ISI = n 2 + n + I and IDI = n + I for D E. In GF(2) S we consider the collection of

characteristic functions for each D d2 and set A equal to their linear span. Thus, A is the

row-space over GF(2) of the incidence matrix of the plane. Since the rational determinant

of the incidence matrix of a plane of order n is

n(n2 + n)/2 (n + 1)

the matrix is always singular over GF(2). In case n is odd, A consists precisely of a ker-

nel of the linear functional which sums the coordinates of GF(2) S; i.e., the space of even-

weight vectors. (This is trivial to see directly since the mod 2 sum of the n + 1 lines

through a point is the vector with 0 at that point and l's elsewhere; tlese clearly generate

the even-weight subcode.) Here we are interested in the case of n even. The dimension of

A clearly depends on the congruence of n mod 4. We have the

PROPOSITION 1. If n -- 2(4), then dirni A = n2 +n+2
2

2
In fact, we give an elementary proof of the fact that if dim A = r, then 2n +n+Ir

divides n(n2 + n)/2; where we only assume n is even. Then n 2(4) will imply

r ?-(n + n + 2)/ 2 .
FR70-3N 11-3
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Proof. Let M be the incidence matrix of the plane. View M as a linear transformation

over GF(2) of GF(2)S into GF(2) S. Now dim KerM=n + n+ 1 -r=k, say. Let al, ... ,

ak be row vectors in this kernel and set

a- k]
N=(j

where we rearrange coordinates so that

k
a. = (0, 0,..., 1, * . :- , ,. . )

i-th coordinate

Now view M and N rationally. Clearly det N = 1, since it is Lpper triangular with 1' s on

the diagonal and NM has its first k rows all multiples of 2. Thus, 2k divides det NM = det

M = n(n2 + n)/2 (n + 1) and hence the Proposition, since 2 divides n once ey,'ctly.

A more elegant proof uses the result from the theory of elementary divisors that any

m x m integer matrix can, by pre- and post-multiplication by unimodular matrices, be pui

in the form Diag (dl, d2 , ... , dm) where d 1 d 2 1... I dm. Clearly, then, for an incidence

matrix of a projective plane the mod p rank of the matrix is at least n2 + n + 1 - s, where

pS but no higher power of p divides n(n2 + n)/2 ( n + 1), since at most s of the d's can be

divisible by i-.
2Since, for neven, dimA-~n + n +2 (this because with an overall parity check added

k is self-orthogonal), clearly, we immediately have the Proposition, and moreover our last

remark yields

PROPOSITION 2. Let (S,G) be a projective plane of order n 2 (mod 4). Let A* be

the subspace of GF(2)SU{*}, generated by all vectors which are characteristic functions of

Du{*}, De Then A* is a half-dimensional self-orthogonal subopace of GF(2)n 2 + n + 2.

Remarks: 1. A* is simply A with an overall parity check added.

2. In case A comes from a plane of order - 0 (mod 4), the dimenaion car

go down. For example, fcr n = 4, the dimension of A is 10, not 11 (see subsection 3 follow-

ing). For a related discussion of the possible dimensions of the linear span of difference sets,

see [ , 2].

11-4 FR70-3N
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Although we are interested in the case n = 10, we proceed more generally under the

assumption that n E 2 (mod 4). Let A be as above. From Proposition 2 follows immediately

the

CORIOLLARY 1. Every vector in A has weight congruent to 0 or 3 modulo 4, and an

even-weight vector is in A if and only if it intersects each line evenly, an odd-weight vector
is in A if and only if it intersects each line oddly.

We next determine the minimum weight in A.

PROPOSITION 3. The minimum weight in A is n + 1. Moreover, every vector ot

weight n + 1 in A is a line of the plane.
Proof. Suppose v in A has weight less than n + 1. If d = weight v is odd, all n2 + n + 1

lines meet v (i. e., v and a line have a 1 in common). But at most d (n +1) lines meet v,

a contradiction. If d is evwn, each line through a fixed point of v must meet v again. Hence,

the weight of v is greater than n + 1. If v in A has weight n + 1, there is some line D of

the plane meeting v at least twice. But then the n other lines through a point on D but not

on v (;f such a point exists) must each meet v at least once, an impossibility. Hence v = D.

DEFINITION. An S.-arc of a projective plane is a set of S points no three of which are

collinear.

An easy argument shows that S-arcs can exist only if S < n + 2. An (n + 2) arc is

here called an oval.

PROPOSITION 4. The vectors of weight n + 2 in A are precisely the ovals of the

projective plane.

Proof. The arguments are as above and very easy.

COROLLARY 2. In a projective plane of order n E 2 (mod 4), any two n + 2 arcs

n +•
meet evenly, in at most n+ points.

(This corollary is immediate from Propositions 3 and 4.)

The above results furnish a new proof of the following.

PROPOSITION 5. There do not exist projective planes of order congruent to 6 modulo

8; in particular, there does not exist a projective plane of order 6.

Proof. Consider A* for such a plane. It is self-orthogonal. half-dimensional, and all

vectors have weight congruent to 0 modulo 4. It is known either from the theory of quadratic

FR70-3N 11-5



forms or can be deduced immediately from Gleason' s solution of the MacWilliams equations

that in such a situation the ambient space has dimension congruent to 0 modulo 8. But this

dimension is n2 + n + 2 =- 4 mod 8, a contradiction.

We now restrict ourselves to n = 10. Thus, A is a 56-dimensional subspace of

GF(2)L1; i.e., a (111, 56) code over GF(2) and A* is a 56-dimensional self-orthogonal

subspace of GF(2) 1 12 and simply A with an overall parity check added. The weight 11

vectors of A are simply the lines of the plane of order 10, the vectors of weight 12 in A

the ovals of the plane of order 10. A I-as precisely 111 weight 11 vectors.

A computation performed by MacWilliams, Sloane, and Thompson [ 3] has shown that

A has no vectors of weight 15. This fact, under the additional strong assumption that the

weight 12 vectors of A* form the design of case d. in Theorem 1 - namely, a Steiner system

of type t = 3, v = n2 + n + 2, k - 12 ( this assumption Is equivalent to assuming that there is

a projective plane of order 10 with an extension) - yields a unique weight distribution for A*.

Itis

Weight Number of Vectors

0 anJ 112 1

12 and 100 1036

16 and 96 0

20 and 92 868, 560

24 and 88 111i,965,910

28 and 84 10,847, 119,360

32 and 80 581,085,136,170

36 and 76 15, 631,795,001,900

40 and 72 219,372, 154,900,360

44 and 68 1,662,571,548,245,160

4& and 64 6,958,514,212,873,685

52 and 60 16,330,986,833,984,592

56 21,682,256, 857, 734, 468

At the present time an attempt to construct such an A* is underway. The methods

being employed do not prejudice the question of existence. An instance of these methods ts

recorded in subsection 4.
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3. The Linear Span over GF(2) of the Lines of the 21-Point Plane.

The lines of this plane can be obtained from the Steiner System of type 5-8-24

by contraction, hence from the extended Golay (24, 12) code over GF(2). It is easy to show
with counting arguments (using the 5-design properties of the weight 8 and 12 vectors) that

the contracted code, a (21, 12) code over GF(2), has the following weight distribution:

Weight Number of vectors

0 1

5 21

6 168

7 360

8 210

9 280

10 1008

11 1008

12 280

13 210

14 360

15 168

16 21

21 1

Clearly, the 21 weight 5 vectors (the lines of the 21-point projective plane) are orthogonal

to the subcode of even-weight vectors. This code is a (21, 11) of course; its 168 weight 6

vectors are precisely the ovals of the 21-point plane.

Computing directly from an incidence matrix of the 21-point plane, one sees that the

linear span is 10-dimensional. Hence, the span of the lines of the plane is precisely the

code orthogonal to the even-weight subcode (which has dimension 11).

Since the weight 8 and weight 12 vectors of the (21, 12) come from weight 8 and 12

vectors, respectively, of the (24, 12) with zeroes at the contracted components, they are

clearly orthogonal to all vectors in sight. Hence, the linear span of the 21-point plane has

exactly 210 weight 8 (and hence weight 13) vectors and exactly 280 weight 12 (and hence

weight 9) vectors. This exhausts the code. Hence, the weight distributioin of the linear

span of the lines of the 21-point projective plane is:
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Weight Number of Vectors

0 1

5 21

8 210
9 280

12 280

13 210

16 21

21 1

Observe that a weight 8 vector arises precisely as the sum of two lines since there

are 210 such configurations.

4. The Row Space of the Z-Matrix.

Let Z be the matrix whose columns are 112 ovals of the 21-point plane,

precisely those ovals with a 1 at o and another at either 0 or 1, thinking of the plane as

coming from a contraction of the (24, 12) extended Golay code, the coordinates contracted

on being o, 0, 1. (The other 56 ovals of the plane have a 0 at 0 and I' s at 0 and 1.)

Because these 112 ovals form a 2-design (2- M2 1 acts transitively on them), each of

the 21 rows of Z has weight 32 and the sum of any two distinct rows has weight 48 (since X =

8 for the 2-design).

Since the columnsiof this matrix span the even-weight subcode of the (21, 12), the

rank of the matrix is 11, a fact easily seen upon exhibiting the matrix using Todd' s table

[41.

We now determine the weight distribution of Z' s row space, a (112, 11) code over GF(2).

Since the columns generate the space orthogonal to the span of the lines of the 21-point

projective plane, any relation among the rows of Z corresponds to a vector in the span of the

21-point plane. Since there are no weight 2 or 4 vectors in the span of the 21-point plane,

each pair of distinct rows yields a differont weight 48 vector.

Now, any vector in the row span o0 Z is the sum of rows corresponding to a subset of

the plane no three of whose points are collinear, since any three collinear points could be

replaced by the other two points of the line containing them.
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Any four points in this plane, no three of which are collinear, are in a unique oval.

In general, in any plane of even order n, any n + ± points in general position lie in a unique

oval. And, in general, by looking at all the lines through a point, we see that there can

be at most n + 2 points in general position.

One computes directly from the fact that each triple of non-collinear points is contained

in precisely 3 ovals, one each from the three classes represented by

S1 1 0
0 1 0 1

1 0 1 1

that the sum of these rows is a weight 56 vector, since the third of the three rows meets the

intersection of the first two precisely twice and each row precisely eight times.
0

Clearly, an oval of type 1 meets each column of Z oddly and hence such an oval yields
1 J

the all-I vector. Any five points of such an oval, therefore, yield the complement of a row

while any four points of such an oval yield the complement of a sum of two rows; any three

yield, of course, a weight 56 vector.

By inspection (since they are all equivalent under 2.M 2 1, one inspection suffices),
1 1

any four points or any five points of chosen ovals (i. e., of type 0 and 1) yield weight 56
1 1 1 0

vectors. Clearly, an oval of type 0 or 1 yields a weight 56 vector since it r icets its own
1 0

type evenly and the other type oddly. Thus, the only weights that appear ar,, 0, 32, 48, 56,

64, 80, 112 and we know there are 21 weight 32? s exactly (and hence 21 weight 80' s exactly

ancd2•)= 210 weight 48' s exactly (and hence 210 weight 64' s exactly). By elimination

there are 1584 weight 56 vectors, Tabularly, the row space of Z has the following weight

distribution.

Weight Number of Vectors

0 1

32 21

48 210

56 1584

64 210

80 21

112 1
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PART Mll

T-DESIGN DECODING AND THE (48, 24) BINARY QR CODE

1. Introduction.

In our 1969 Report [ 3, MII, 3] we presented a majority-logic method for decoding

the Golay (24, 12) binary code, a 5-design code, involving use of the 2-design formed by

the ntinimum-weight code-vectors with 1' s at a given pair of coordinate places. This

method allowed correction of all errors of weight 3 or less and detection of all errors of

weight 4, which together exhaust the coset leaders of the code. Here we present a method

for decoding binary t-design codes by means of the 1-design formed by the minimum-weight

vectors. This was done for the (24, 12) code by Goethals [ 5] and has since been generalized

by him [ 6] independent of our work, although we expect eventually to publish this work

jointly with him.

The general tactic is simple to describe. If the orthogonal to a code A has a t-design

among its vectors of a given weight, say with parameters X; t-w-n (see [2] for definitions

and examples), then thib design may be regarded also as a t-1 or t-2, ... , or 1-design with

parameters

X= t; t-w-n

?Lt_l; (t-1)-w-n

II 1-w-n (1)

given by the simple relations

=i (n-i) t i= 0, 1, t (2)

(N)i stands for the familiar descending product N(N-1)... (N - i + i). The general tactic in

this decoding method is to compute the dot-products of the X vectors of the 1-design which

have 1, s at a given coordinate place p with a received vector v + E, where v (from A) was

sent, and the error E was "committed" by the channel. The outcome is the dot products

with E, a vector really of X 0' s and 1' s; we are interested only in its weight. We com-

pute theoretically this weight for all possible cases for e (= weight of E) running from 1 up

FR70-3N rn-1
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to some value, say, eo. If these weights are. dizerent from each other, then all cases are

distinguishable from each other via this procedure: and so the code A will correct all

errors of weight e0 or less; in particular, A has minimum distance at least 2e + 1.

2. Calculation of the Decoding Table, and Some Consequences.

The job here is simply to identify the cases and compute the weight of the X1 -length

vector mentioned above for each case. That is, we seek the number of vectors among the

chosen X1 in the design from the orthogonal code to A which have dot-product 1 with the

assumed error-vector, and we shall call this number the outcome.

Let p stand for the coordinate position being checked; that is, the X1 vectors used

in the dot-product calculation all have a 1 at p. Let S stand for the set of these X1 vectors

of B. Then, if the error has weight 1, the outcome is X1 if the error is at p, but is X2 if

the error is not at p. If the error has weight 2, then the outcome is X1 - X2 if the error

has a 1 at p, and it is 2(X2 - X3) if position p is not in error. These results are calculated

by simple inclusion-exclusion arguments. For example, assuming t L- 3, the number

2(x 2 - X3 ) arises as follows: let the error be at p', p", neither equal to p. There are

X2 coverings of p and p', and X2 of p and p"; but coverings of all three, X3 in number, have

been counted twice but have dot-product 0. Thus 2I 2 - 2x 3.

LEMMA 1. Let t 2- e. The outcome for an error of weight e covering p is X less

the outcome for an error of weight e - 1 not covering p.

Proof. It is almost self-evident; the X1 vectors covering p have dot-product 1 with

an error vector E of weight e covering p if and only if they have dot-product 0 with the

vector of weight e - 1 defined by removing p from E (we identify a vector with the set of

coordinate places where it is 1 when convenient); the latter are all those not having dot-

product 1 on E- {p}, hence the conclusion.

We present the results for t 5 5 in Table MI-1, in which the entries are the outcomes

as defined above.
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TABLE MI-1. DECODING TABLE:OUTCOME OF DOT PRODUCTS
ON ERROR VECTORS

Valid Weight Position p is
for Error Vector in Error Not in Error

1 1 A2

t 2 2 2(x2  x3)

t a-3 3 X-2x +2x 3  3x-6 x+ 4 x
1 2 2 3 4

t 24 4 X1 -3x +6X 3 -4x 4  4(X 3X +4x 2x)
t 3}1 - 2 32 4 2332 - 6 3 +4- 5

1 4(x -3x +4x -2X ),,6g+5(x -4X+÷8? -8X

t->4 ~ ~ I 41-3 2 +_ 63 - -4 __5 / 4 2 - 3 + 4 -2.5)

6 X1 -l6g-5(X2 - 4 X3 +8x 4 -8 5 ) 16v+2(3x 2  15 3
+40 x4 - 60x 5 )

The left-hand column of entries is calcudated from Lemma 1 and from the right-hand

entries, which are derived by the kind of inclusion-exclusion argument given above. The

entries in the line for e = 6 will be explained in a moment. We now discuss the right-hand

entry for e = 5.

We assume t = 5. g± is defined for each 6-subset of coordinates as the exact number

of code-vectors of B (of the weight class forming the t-design in use) having 1' s at all co-

ordinates of 6-subset. In the right-hand entry for e = 5, the 6-subset is {p} uE, where E

is the error vector of weight 5. The outcome is the number of members of S meeting E

exactly 1 or 3 or 5 times. We indicate the derivation. 5X2 is the number of members of S

meeting E once or more. Since there are 10 2-subsets of E, and each is counted twice in

the 5X" term, we exclude all the members of S meeting E twice or more by subtracting

20x3 . Every member of S meeting E exactly three times, however, was counted thrice in

5X2 and 6 times in 20X3. By adding 4(3)X4 = 40x4' we include all members of S meeting E

3 or more times, Those members of S meeting E exactly 4 times were counted 4 times in
5x2) 12 times in 20X3 and 16 times 40X4 , hence we exclude the members of S meeting E

4 or more times by subtracting 8(4 ) 5 = 40, 5X Finally, there are by definition g members

of S meeting E 5 times; each of these was counted 5 times in 5X2 2(2) = 20 times in 20x 3,
5 54(]) = 40 times in 40X4 and 8(4) = 40 times in 40X5 ' The net is -15, so we add 16 ji.
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The argument of Lemma 1 applies here even though we do not assume a 6-design,

hence our entry in the left at e = 6.

In the entry on the right at e = 6, v is defined as the number of members of S which

meet the weight-6 error E on exactly 5 spots. By an argument entirely similar to the pre-

vious one, we calculate the outcome. Note that the number of members of S which meet E

in all six spots is of no interest here, because they have dot-product 0.

We now state a Theorem based on this table and investigate some matters growing

out of that Theorem before returning to our decoding problem.

THEOREM 1. Let A be a binary code whose orthogonal contains a t-design. If the
entries in the first t-1 rows of Table 111-1 for this code are all different from each other,

then the minimum weight d in A is at least 2t-1. Moreover, although the t-th row of the

table may have multiple entries, if these are all distinct from each other and from those
above, then d = 2t + 1.

Proof. There exists a decoding algorithm for A correcting any t - 1 (or t) errors.

COROLLARY 1. The orthogonal of the non-trivial binary 3-design code has minimum

weight 5 or more uiless the code is the extended maximal length (2 k, k) code.

Proof. In Table EI1-1 we investigate the possibility of equalities among the entries in

the first two rows, making use of (2), of course.

1. If X1 = X2V then the design is trivial; i. e., it either consists of the empty set

(X1 = 0) or has precisely one block consisting of the underlying set (d = n):

2. If x1 - X2 = 2(X2 - X3) then, expressing everything in terms of X3 ' we have one

of the following 3 cases:

a. X 3 = 0 and the design is the empty set;

b. n = d, and the design consists of one block;
S' c. n = 2d.

This case can occur; e.g., A is the orthogonal to the extended Hamming code B. B has

minimum weight 4, so all double errors are ambiguous.

These results follow since the equation

n-i1 2(d -2) 3Sd - + =3n-7

as a quadratic in n h s the solutions n = d and n = 2d.

11I-4 FR70-3N

%9I



3. )lI - x 2 = 'X2 implies n = 2d - 1, a contradiction, because the code must be the

maximalength code, as we now prove.
PROPOSITION 1. The binary (n, k) code with n = 2d - 1 in which the weight d

vectors form a 2-design is the ma imal length code.

Proof. There can be no repeated columns in the code (i. e., no two coordinates

are identical) because this would imply X1 = )2, hence from (2) that n = d, hence d = 1 = n.

No coordinate functions are 0 or there would be no design. From Plotkin's bound

d5n2 k-1/( 2k - 1)

it follows that n >-2k - 1; hence n = 2k - 1 since no coordinate functions may be duplicated -

Q.E.D.

This result complements our Corollary 3 in [ 1].

Such a code is not a 3-design because its orthogonal, the Hamming code, is not

a 3-design [7].

We now complete the proof of our Corollary.

N= 2( 2 - Y3) implies

n-1 d-2

or if d > 2, the left side is negative and thus

n+<1

22which contradicts the bound d -• [ 3(6)]. If d = 2, then n - 3, a trivial case.

This completes the proof of the Corollary, and we return to our decoding topic.

3. Application to the (48, 24) QR Code.

We now specialize the problem to the (48, 24) extended binary quadratic residue

code.

This code is self-orthoInal, of minimum weight 12, and all weight-classesJ form

5-designs [ 2]. We shall work with the weight 12 vectors, which are a 5-design with para-

pneters 8; 5-12-48. It follows from (2) that
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x=8
*1 5

A4 = 44
3 = 220

X2 = 1012

X1 = 4324

We now ill Table rn-1 with these values for the A' s.

TABLE MI-2. THE DECODING TABLE FOR THE (48, 24) CODE

Position p is

Weight of Error In Error Not in Error

1 4324 1012

2 3312 1584

3 2740 1892

4 2432 2048

5 2276 2100 + 16k (0: p_ 5)

6 2224-16g 2032 + 16v

It is apparent that all .the entries are indeed different, except perhaps that those ii-

volving I or v will produce a coincidence somewhere. We recall the definitions of g and v

and then make some needed remarks. For a given 6-set A is the number of weight 12

vectors of the (48, 24) code with 1? s at all the spots of the 6-set. The 6-sets understood in

Table IM-2 are {p} u E and E on lines 5 and 6, respectively. v is defined •s follows: for

a given 6-set E not containing p, v is the number of 12-clubs (code-vectors of weight 12)

with 1' s at p and at exactly 5 spots of E.

Thus, in particular, v is at most 48 (= 6. 5).

REMARK 1. All we need from the table is the condition that no number appear in

both the left- and right-hand columns. This suffices to determine whether there is an error

atp.
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REMARK 2.

a. If an error of weight 6 is contained in one or more 12-dlubs, then it cannot be

corrected by any method in the sense that it is not a unique leader in its coset. Therefore,

for each positive g, provided there is a 6-set contained in ex:actly g 12-clubs, we should find

the value 2224 - 16g on both sides of the table, and on line 6. Specifically, if E and E' are

6-sets whose union is a 12-club, and if p is in E, and g1= gi(E), v = v(E'), the outcome for

the error E musE be the same as that for the error E'. Therefore

2224 - 16g•= 2032 + 16 v,

which is equivalent to g + v = 12.

b. Since no two 12-clubs can meet in more than six places, an upper bound for g

is 7. Thus, for a 6-set E with a positive g, the value of v for the 6-sets E' such that E uE'

is a 12-club is at least 5, but at most 11.

Ambiguous Cases.ii <

Si. We have just seen that an error of weight 6 is uncorrectable when it has

positive i and that this fact is reflected in the outcome of our decoding procedure.

ii. The entries 2100 + 16tL on line 5 at the right can never coincide with any of

those on the left, for by Remark 2 b. g is at most 7, hence 2100 + 16Mt is at most 2212; and

2224 - 16g•' cannot equal 2100 + 16gi since 2100 ý 2224 (mod 16).

iii. For positive g we know that v -s 11. Therefore, the right-hand entry

4 2032 + l6v is at most 2208 when g• > 0, showing that none of these values can also appear

I on the left.

iv. But for p = 0, we do not yet have any bounds on v except the obvious one

already mentioned (v s 48), which gives 2800 as an upper bound for 2032 + 16v. On the left,

the entry 2740 is not 0 mod 16, and neither is 2276; 2432 is 0 mod 16, however, and so is

2032. Thus v = 25 would give ambiguity if it arose.

v. The only remaining possibility is an error of weight 6 with A = 0. It is a

unique coset leader and ought to be correctable, but the left-hand entry on line 6, 2224,

would coincide with the right-hand entry if the value of v were 12.

The remainder of this account will deal with this only remaining unsettled

case, namely, the value of v for the error of weight 6 which is not contained in any 12-club,

for we prove in subsection 4 that v < 25.
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We state our findings.

PROPOSITION 2. For every 6-set E of coordinate places not contained in any

12-club and every p not in E, the value of v is 8.

Proof. By computer. The program is described in the Appendix to this part.

COROLLARY 2. The ambiguities of cases iv. and v. do not in reality arise. The

decoding procedure corrects a! errors of weight 5 or less and all errors of weight 6 which

are unique leaders of their coset.

COROLLARY 3. No error of weight greater than 6 is a unique leader of its coset.

Proof. Suppose the contrary, that a vector E' of weight w L- 7 is the unique leader

of its coset. There can be no 12-club containing E', and if E is any 6-subset of E', then

there cannot be any 12-club containing E, for it would yield another leader of weight w on

being added to E'. But if E is one such subset of E', the Proposition states that there are

12-clubs meeting E' in a 6-set.

Therefore the decoding procedure corrects all errors which are unique leaders in

their cosets.

It remains to determine how many correctable errors there are; the only difficulty

is to find how many of weight 6. The answer is set forth in Table M-3.

TABLE MI-3. NUMBER OF CORRECTABLE ERRORS OF EACH WEIGHT

Weight w

0 1

1 48

2 1, 128

3 17,296

4 194,580

5 1,712,304

6 2,334,960*

w-7 0

Total 4,415, 947
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48)of errors of weight 6 are correctable.About 18 percent (= 2, 334, 960 - 6(46)o

There are approximately 10 million uncorrectable errors of weight 6 distributed in

4, 112, 124* cosets. All the rest of the cosets, in number about 8 million, have more than

-24 1one leader of weight 7 or more. The total number of cosets is 2 16, 777, 216.

The a-distribution of 6-sets is given in Table 1M-4.

TABLE I-4. NUMBER OF 6-SETS CONTAINED IN EXACTLY 12-CLUBS*

0 2,334,960

1 5,629,848

2 2,750,064

3 1, 400, 976

4 129,720

5 25,944

6 0

Total (4)

*These values were obtained by computer (see Appendix).

4, Theoretical Results.

Although we were forced to resort to computer for some of our results, we have a

partial theoretical result which we now present. It is not dependent on our computer
findings.

LEMMA 2. Let E be an error of weight 6 not contained in any 12-club. Let p be a

point not in E. Then v (p, E) < 25.

Proof. v is defined as the total number of 12-clubs which meet E in 5 places and

which cover p. Let N1 , ... , N6 be the (mutually disjoint) classes of 12-clubs which have the

the form 011111, 101111, etc., on E and have a 1 at p. Let n I n6 be the cardinality

of N1, ... , N6 , respectively. Then, denoting E by p1, V '" P6 1 we see that
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1. n-- 6 for each i. For if n were 7 for some i, there would be 7? 12-clubs

i covering the 6 points p, pl ... , IPi " P6' and having 0 at pi, These would have to

cover all the remainder of the 4F points including p a contradiction.

2. n. - 5 for each i. For if n . were 6 for sume i, then the sum of all 6 weight

12, s would be a vector of weight 36, the complement of which would cover all 7 points

p, p' "'"~ 'P 6 , a contradiction to our assumption that pl' """ p6 is not contained in any
weight 12 code vector.

3. n. = 5 implies n. - 3 for all i j. Alternately, n. n. -n 8 for all i/j. For

N. u N is a class of 12-clubs with i's at the 5 points p, Pl' "'p i' ... I P' "'. P6'

and x 8.
5-

a34. Thus v = n 1 + ... + n6 < 25. For if ni = 5 for some i, then all n,. for j i,

are 3; thus v = 2 0 . If n. -< 4 for all , then v -s 24.

Thus one of our possible ambiguities is eliminated.

5. The Decoding Procedure.

First, perform the 4, 324 dot products consisting of all the weight-12 parity checks

which cover the first coordintate of the code.

The outcome is the number of parity-check values equal to 1. If there are 6 or fewer

errors present, act according to the following directions:

(1) If outcome is 0, no errors are present.

(2) If outcome is 2224 or greater, th'in the value in the first coordinate is in error.

Change the value, cycle the vector once, perform the 4, 324 dot products, and go to (1).

(3) If outcome is 2208, 2192, 2176, or 2148, then an uncorrectable error of weight

6 is present. Hence, declare the vector in error and thus detect but do not correct it.

(4) If the outcome is 2160, cycle and repeat the checks. If the outcome is always

2160, then there is an uncorrectable error of weight 6. Otherwise, the outcome will be

2214 at various places, in which case proceed as in (2).

(5) If the (positive) outcome is 2132 oQ less, or if it is 2148, 2164, or 2180, then

the first position is correct but there is present a correctable error of weight 5 or less,

which will be corrected on repetition of these cycling and parity-check operations.
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This procedure corrects all errors of weight 5 or less and 18 percent of all errors

of weight 6. (There are no other correctable errors.) It detects all other errors of weight 6.

Steps (1) through (5) are easily derived from Tables 111-2, MI-3, 111-4, Remark 2 and

Proposition 2.

6. Appendix.

How the computer was used. A basis for the code, generated in 1966 for our

research on 5 -designs, was typed into storage. The X3 = 220 12-clubs containing three

fixed spots 0, 1, 2 were then generated and stored. Since the invariance group of the code

is 3-set transitive, it sufficed to compute what we wanted on this tableau. The 14, 190

3-subsets of {3, 4, ... , 47}, 47 standing for o, were then processed in turn:

1. The first action taken was to orbit the 3-subset under the group of order 3

fixing the tableau, generated by 2 1), which permutes 0 to 1 to 2 to 0. If any member of

the orbit of the triple had been processed already, the present triple was dropped and the

next one taken up.

2. The next process was to compute g for the triple a, y3, ', which passed test 1.

The three columns of the tableau, having been converted to words, were simply 'landed"

together, and the weight of the resulting word was g for the 6-set {0, 1, 2, a, 3, y•}. The

i counter was bumped, and whether {a, 3, y} was fixed by the 3-group above was counted

also.

3. If • = 0, the value of v was found. This required "anding" a, $3, and y in pairs

and for the "and" of each pair, computing the "and" with each of the 42 other columns J,

and then the weight of the result, recorded as a function of J. After that, a permutation in

PSL 2 (47) carrying {0, 1, 2} to {a, p3, v} was calculated (see below) and performed on the

columns of the tableau. Then, after columns {0, 1, 2} and {a, $3, y} were interchanged,

the same routine was run again. An instruction to print and pause if v were not 8 for any J

was present, but was never executed.

FR70-3N rn-11



The transformation (a •), where

a = $ 2S3 +S 1S2 - 2S 1S3  (24S2 - S1)

b= 2SI(S3 - S2) (S1)

c=2S2 -SI-S 3  (23)

d = 2(S3 - $2)v (1)

is in PGL2 (47) and carries {0, 1, 2} to fS11, 2, S3' , provided none of the s, s is
(Because our 3-sets were generated in the order 3, 4, 5; 3, 4, 6; ... ; 3, 4, 47;

3, 5, 6; ... ; 45, 46, 47, only S3 could be = 47, and the values for a, b, c, d in that
case are in parentheses above.) The determinant ad-bc was tested for quadratic residuacity;

when it was not a quadratic residue, the matrix was multiplied on the right by (11 '), which
is in PGL 2 (47), not in PSL 2 (47) and has the effect (01)(2) on 0, 1, and 2.

A large number of hand checks of every part of the program was performed; also

internal program checks were written in; the accuracy Is highly recommended. Once the

tableau was cast into proper form for processing, the whole program, written in Fortran,

ran in four minutes of execution time (1900 kilocore-seconds used) on a PDP-10 time-

sharing system.

A fast weight-counting routine, in which the effort is proportional to the weight, was
used. Taken from [ 4, p. 16], the essential idea is that the least significant bit equalling 1

in the word W is made 0 while all other bits are unchanied by the step

W= W. AND. (W- 1).

In our problem the highest weight computed was 5.

The fact that v has the constant value 8 whenever g = 0 was a surprise to us; it was
suggested by some preliminary results typed out for hand checks, and then the instruction

to print whether v was different from 8 was written in.

The output of the program was the /-distribution of the 3-subsets of {3, ... , 47}
according to whether or not they were fixed by the 3-group acting on the tableau. It is

shown in Table M11-5.

11I-12 FR70-3N



TABLE M1-5. NUMBER OF TRIPLES*

0 1 2 3 4 5 6 7

Not Fixed 899 2170 1060 536 50 10 0 0

Fixed 3 0 0 12 0 0 0 0

*The tables in the text were derived from this one by simple calculations.
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PART IV

ON THE (60, 30) QUADRATIC RESIDUE CODE OVER GF(3)

1. Introduction.

The code A of the title has been defined as one of an infinite class of extended

quadratic residue codes, in [ 1] for example. That every code-vector in A has weight

divisib'e by 3 is also proved there - the result follows from the fact that the code is self-

orthogonal. The square-root bound on the minimum distance d comes from (see [ 1])

d,(dI-1)___59-1, whered= 1+dl; thusdI>8, sod>9; hencedf12.

Pless has defined a class of self-orthogonal codes over GF(3) which includes a

(60, 30) code for which the entire weight-distribution is known. The minimum distance in

Pless? s code is 18, and the distribution of weights is given by the entries in Table IV-1

[4]. This weight distribution is unique in that the MacWilliams equations have a unique

solution fcr such (60, 30) codes when the minimum distance is 18 (see [5]).

Using a ,contractionw, mapping (in subsection 2 of this Part), we are able to show in

subsection 3 that the code of the title has minimum weight either 12 or 18; that is, minimum

weight 15 is not possible. Then, in subsection 4, we derive a simple result on the minimum

weight in certain cyclic codes. This allows us to use a computer to determine that the min-

imum weight is 18 on examination of two million code-vectors. Thus, the code yields new

5-designs of block size 18, 21, ... , 33 on 60 points, and it has the same weight d.stribu-

tion as the Pless code in the following table.
4
-I
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TABLE W-1. (60, 30) PLESS CODE*

Number of Code-Vectors Weight

1 0

0 3

0 6

0 9

0 12

0 15

39 01080 18

2414 56320 21

88242 42960 24

17 20740 38080 27

185 03590 81824 30

1101 47500 94040 33

3609 93693 80880 36

6395 84677 67040 39

5927 89001 50800 42

2727 06401 78880 45

573 92571 92760 48

48 50290 78560 51

1 31440 38880 54

714 51360 57

41184 60

*From Reference [4].
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Gleason [[2] has found the generators of the weight distributions of all self-

orthogonal codes over GF(3) (i. e., codes for which the orthogonal code has the same

weight distribution). In polynomial form they are

P=y 4 +8x 3 y

Q= (y3 _ x3)x (1)

Here, x is the weight counter and y is the 0 counter. P gives the weight distribution of the

(4, 2) code spanned by 1 1 1 0 and 1-1 0 1.

The weight distribution of the Golay (12, 6) code, for example, is written as

p 3 _ 24Q. The set of all products of P and Q of degree 60 yields all the solutions to the

MacWilliams equations in that case, namely

15 12 9 2 -6 3 3 4 5p1, p Q,PQ,PQ,PQ4 Q.

That is, any solution has the form

15 5 15-3i 4i
P +za.P1J

for appropriate constants a1, ..." ac5 In order to produce d Ž 12 we need only consider

the solutions

3 4 15mp3Q + nQ + P (2)

for integers m and n.

The tails of the weight distribution (2) for our code A are theref, re:

Weight Number of Code-Vectors

12 m

15 12m + n

60 -n + 41, 184 (3)

for some proper choice of m and n. We will now explain a method which allows us to prove

that m = 0 implies n =0; i. e., that if d > 12, ther d =18.
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2. The Contraction Mapping for Codes.

Suppose we have a concrete n-dimensional vector space V - Fn over the field F.

If we choose a set of m vectors from V and use these as linear functionals on V via the

usual inner product we get, of course, a mapping 1 from V to Fm. If A is a code contained
In

in V and if we restrict 4 to A, then we have mapping from A into F

We now specialize the above situation: let A be an (n, k) code over GF(3) and let a

be an invariance of A. Set V = GF(3)n viewed as the containing space; set r = order a.

For our linear functionals we shall take certain vectors v with the property that either

ov = v or ov = - v. Sometimes there are no such non-zero v, however, so we must choose

a properly. In particular, we have the following two results.
LEMMA 1. If 41 r and ar/2 - 1, then there does not exist any non-zero vector v

of V with either uv = v or av= -v.

r/2
Proof. an, = v implies a v v implies -v= v implies v =0. And a= v implies

a r/ 2 v (-1)r/v implies -v = v implies v = 0.

LEMMA 2. If 21 r and r/2 is odd with ar/ 2 = -1, then there does not exist any

non-zero vector v of V with ov = v. Moreover, if each cycle of a is the same size, then

for each cycle of a (a denotes the permutation part of a) there is a unique non-zero (up to

multiplication by *1) vector v of V whose support is the given cycle with ov = - v.
Proof._. If = v, then r v = v and -v = v and v = 0. Clearly, av= -v is possible.

Let w be a vector with a 1 at one place in the given cycle and 0' s elsewhere. Consider
2 cr/2-1w

w - aw + a w - ... +ar w = v. Clearly, the support of v is the given cycle. That

av = - v is clear. Suppose v' is another such with support v' contained in the given cycle.

Then clearly the support is the whole cycle and, by adjusting if necessary, we can assure

that v - v, has a 0 on the cycle. But a(v - v') = v' -v (v - v'). Therefore v - v' = 0.

ii REMARK. The Lemma is true even if the cycle sizes are different: one has to

replace r/2 by s/2, where s is the order of a restricted to the given cycle.

We now assume A is self-orthogonal and every cycle of F is the same size, namely

r/2. Thus (r/2) In; say (r/2) s = n. The n coordinates split up into s cycles of size r/2.

Let vl, ... , v be the unique (up to multiplication by *1) vectors of V described by
n s

Lemma 2. We nrap V = GF(3) to W = GF(3) by
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vv *(v Vl, v v2` v Vs), where x . y denotes the ordinary dot product.

THEOREM. q(A) is a self-orthogonal subspace of W.

Proof. We view the coordinates as indexed by (i, j) where 1 5 i - s, 1 _< j _s r/2,

the orbits of abeing {(i, 1), (i, 2), ... , (i, r/2)} for i = 1, 2, ... , s. Now, vi is 0 at

(i', j) for i' i i. So we view v. as (v v Suppose x, y cA. Then
1 i, 1, vi, 2, i, r/2)

r/2 r/2
41(x) ... , Vs, A,);(pl1 vl1f, j' j=1l

similarly for ip(y). Therefore

s r/2 r/2
IP(x) - P(y) = z E z v. jvi, ki Yi, k

i=1 j=1 k=-i 1 ,
2

But V. = 1 for all i, j, and therefore

s r/2
i v. .v. .x. Y. x. y=0. We therefore view (*)as r/2 sums

i7-- j=1 1,31313131

s r/2 s r/2

v X v.v +x Z E v..v. 1 x..y 4 1 + +
vijvjii1j 13 ii i =1 j 1i j+ 13 ij+]

i7-1 j=1 ~

s r/2+ Z: Z v..v.
i=+ E l 13 i,Jr+r/2r12x. iji.i r/"- "

Lhe second index taken mod r/2. Now suppose a is such that a sends (i, j) to (i, j + 1)

multiplied by e., i.e., (y. .)F' (E.y, j+l)" Since each v. is sent to -v by , v

-Evi, j, orv. .v. =. Hence

s r/2 s r/2
v~ j l 1, v i, j+I Xi, i Yi, j+l ijx i, jYi, j+l

i-- j=1i--1 j--1

But E .x. = (ox).. j. Therefore; ]~~~ 1, j i jl

s r/2 s r/2

Each of the other sums is in a similar manpirr seen to be 0 - Q. E. D.
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REMARK. The situatir n is even simpler over GF(2). For example, the extended

Hamming (8, 4) code under x: i -- - i (mod 7) whose orbits are (0, -)(1, 6)(2, 3)(4, 5)

is mapped onto the obvious (4, 2) self-orthogonal code.

3. The (60, 30) QR Code Over GF(3).

We now choose A to be a (60, 30) extended quadratic residue code over GF(3).

PSL2 (59) has order 60.59.29, and from Dickson [ 3] (or Sylow) we know that in particular

there are elements of order 5 in PSL2 (59). We actually compute an invariance a of the code

A which has its permutation part of order 5 and which satisfies a = 5 1. (The computation

is sketched in the Appendix.)

We then get 12 vectors vl, ... , v12 each of weight 5, such that o(v.) = - v. for

GF312i = 11, ... ,9 12. Using these, we map A to a subspace of GF(3)1 Vt ch, by our previous

Theorem, is orthogcnal to itself. We calculated that in fact it has dimension 6, and we
then proved it was 6quivalent to the Golay (12, 6) code by the following method.

We chose six linearly independent vectors from *(A) and by row operations and

column interchanges obtained the following six vectors (+ = 1, - = - 1, blank = 0):

1 2 3 4 5 6 7 8 9 10 11 12

+ -0 + + - -

+ - - + + 0
-+ -+ + 0 +

0 - +
-- + 0 + 4- +

+ 0 + + - -+

Then by monomial operations we transformed the right-hand half of this array into

0 . . . . .

+ 0 + - -+

+ + 0 +--

+ -+ 0 +-

+ -- + 0 +

+ + -- + 0

which is Pless' s matrix S5 in her generatiun of the Golay (12, 6) code by (I6; S5) [5].
Therefore we have proved
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PROPOSITION 1. When A is the (60, 30) extended quadratic residue code over GF(3)

and o is any non-trivial invariance of A such that a = - 1, then the mapping V/ defined pre-

viously maps A onto the Golay (12, 6) code over GF(3).

Proof. We proved this for one such a, but all are conjugate in the invariance group

of A.

COROLLARY. No vector v of weight 15 in A can be stabilized by an invariance a of

the type described in Proposition 1 (stabilizing is taken in the sense that av = - v).

This is true because v would have to be v- ± v. ± vk for three of the special1] k
vr1 ... , v 12 . But then , would map v to a vector of weight 3, and there are none in the

Golay code.

PROPOSITION 2. If m = 0 in (2), then n = 0 also. That is, if A has no weight 12

vectors, it has no weight 15 vectors, either.

Proof. If m = 0, then n ib the number of weight 15 vectors in A. Thus n a 0. The

invariance group of the code, "2 PSL2 (59)," has order 60.59. 58= 3- 68,440. Since the

number of weight 60 vectors in A is 41, 184 - n, n must be less than 41, 184. By [ 1, p. 148] the

stabilizer (permutationally) of a weight 15 must have order dividing 15, i.e., the order must

be 1, 3, 5, or 15. It cannot be 5 or 15 by the Corollary above. But if it is 1 or 3, there are

at least 68, 440 vectors of weight 15, a contradiction - Q. E. D.

Thus we have reduced the question of the minimum distance in the (60, 30) quadratic

residue code over GF(3) to the question of the existence of weight 12 vectors in the code.

For this question, we now develop a computationally feasible approach. It is based on
Pless' s method [ 5] for her symmetry codes over GF(3).

4. On the Minimum Weight in Cyclic Code3.

Let n = 2k + 1 be an odd integer and let A be a cyclic (n, k) code over F = GF(q).

Pick a generating matrix for the code as follows:

G= [1k; C; S]

where Ik is the k x k identity matrix, C is a k x 1 matrix, and S a k x k matrix. Suppose one

knows that A has a minimum weight a: w, where w is an even integer. (The case of w odd is
easily treated also, but we do not do this here.) We describe a method for determining

whether or not the minimum weight is w. In fact, we prove the following.
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THEOREM 2. If every vector of A with weight sw/2 - 1 on the first k coordinates

has weight > w, then A has minimum weight > w.

Proof. Leta E A haveweight sw. Then the weight of a on the fUrst k coordinates must
be ý w/2, by assumption. We can insure, by cycling to the left if necessary, that a has a

non-zero entry on the (k + 1)-st coordinate. This having been done, the cycled a still

must have weight -: w/2 on the first k coordinates by assumption, since cycling does not

change the weight. On the last k coordinates, a now has weight :- w/2 - 1. But by cycling

k times to the right, the new a will have weight : w/2 - 1 on the first k coordinates, a

contradiction. Hence the Theorem.

Thus, the total number of code-vectors to be examined is at most

w/2-1
Z (k)(q_ 1)

i=0

In examining code-vectors in accordance with Theorem 2, one easily sees that if the

€.oordinate is 0 in the position designated C on page IV-7, then a cycle of that vector once to

the left will produce a vector already examined (if we run through the subsets lexico-

graphically from the left - as we did; i. e., the first 5-subset of rows was {0, 1, 2, 3, 4},

the next was {0, 1, 2, 3, 5}, and the last was {24, 25, 26, 27, 28}. Such a vector need

not be further processed.) Implementing this observation reduced the computer time needed

by about 1/3.
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Note that for the (60, 30) extended quadratic residue code over GF(3) we know that

d -> 12; and we can examine the cyclic (59, 29) "small" quadratic residue code (of the same

minimmn weight as the (60, 30)). Thus at most

E (29 1 2, 105, 545

i=-o

vectors need be examined.

The above procedure was carried vut by means of a Fortran program on a PDP-10

time-sharing system. Interiml checks were made to see whether each vector calculated

had weight divisible by 3 and to print the total number of code-vectors calculated. Both

these checks were satisfactory. Another check was an instruction to print any vector with
weight less than 18. This was never executed. Therefore, wve conclude that the (60, 30)

extended quadratic residue code over GF(3) has minimum distance 18, and that therefore,
by [ 1), the code-vectors of weight w, for 18 < w -< 33, yield 5-designs. These 5-designs

have, of course, the same parameters as those arising from the Pless codes [ 5]; but as

Pless has shown, hers and ours are inequivalent, because they have different auto-
morphism groups: Pless his shown that the group acting on her designs contains PSL 2 (29);

ilis cannot be contained in the automorphism group of the present designs, which is

PSL2 (59).

We are grateful to David J. Segal for assistance in programming this problem.
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5. Appendix.

2 3Using the isomophism between SL 2 (59) and the matrix group over GF(592) consisting

of all matrices of the form

,ab

159 59-b a19
with determinant 1 (Dickson [3] page 264), we calculated a 60th root 0 of 1 in GF(59 2):

0 0

the matrix - then corresponds to what we want in SL 2 (59).20 a
Let OE GF(f ) be such that 0 = 1, a primitive (Q + I)-st root of unity. Then

0 has order + l)/2 when viewedinL) SetJ (P )in SLGO))=e where

p _1. Then

0-J oLf~ -1)
3k\0 0) 1

is of order(Q + 1)/,2 when viewed in SL 2 (t). 0 + e is the trace of 0 from GF(f ) to GF(f),

so the desired element of SL 2 (f) is that on the right.
22

The calculation of 0 proceeds: let K = GF(59 ) and F = GF(59). Then K consists of
all roots of 1 of order dividing 60 * 58. Aside from i1, the 60 roots of 1 in K are therefore

all the roots of all the irreducibie second-degree poly.iomials over F, since these are the

elements of K not in F. Such polynom.als have the form

f(x)=x - ax+ 1,
59 60

since the constant term must be ot • a = a = 1. They are reducible if and only if

2a -4is0oraquadraticresiduemod59. Since 22 _4=0, 32-4= 5, 42-4= 12,52 - 4 = 21, f (x) is reducible for ±a = 1, ... , 5; but it is irreducible for a= ± 6. We then
a

found

12 2 x2
x 1-2 x (modx2 -6x+ 1),

which means f (x) has exponent 20, and that roots of it -r therefore primitive roots of 1 of6 22
order 20. We denote a root oi x 6x + 1 by x and take I. and x as a vector-space basis for
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2K over F. We put w =cx + d and solve for c and d in F in the equation w + w + 1 =0,
thmaking w a primitive cube root of 1. Then 0 = wx is a primitive 60 root of 1, and

o = 10(3x - 2). Thtus trace 0 = 10(3 . 6 - 2.2) = 22. Hence

(122 -1)0

or the permutation y I- 22 - y of {GF(59)u o}, is what we want.

We find the signs for the monomial representation of this invariance by the factoriza-

tion

(2: 4) = 1( 22) -14 L
The firsi of these is the cyclic shgt 'aised to the 22nd power; the other is the special in-

volution of PSL2 (59), the signs for which are given in [ 1, p. 131]. Thus our monomiai

raised to the 6 th power is given by the following array:

Monomial Transformation "Fixed" Vector

58 16- 31- 40- 48 + + + + -

23- 33 41 50- 6- + - + + +

4- 47 45- 9 12- + - - + +

7- 27- 1 35 17- + + - + +

5- 46- 21 54 15- + + - + +

10- 13- 36 34- 18 + + - +

22 57 14 26 28- + - + - -

30 52 43- 56- 3- + - - -

20- 39 11- 42- 2 + - - - +

51 19 25- 38- 29- - + + + +

0 53 55- 8 24 + - - + -

0- 32 37 44 49 - + - + -
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Read across a row from left to right to see the permutation action of the order-5 element;

read down a column to see the action of the element of order 30, The signs are interpreted

as follows: for row 1, the permutation matri, corresponding to (58, 16, 31, 40, 48) is made

by row permutations of the identity matrix. Then the indicated rows are multiplied by minus

signs (rows 16, 31 and 40). in other words, the coordinate value in place 58 goes to place

16 and is multiplied by -1. These signs are not so interpretable for the element of order 30.
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PART V

MISCELLANEOUS RESULTS

SECTION 1

A REMARK ON PERFECT BINARY CODES

PROPOSITION. Let A S GF(2)n be a linear perfect code with d = 2e + I and e -> 1.

Then, not only does e + 1 divide n - e but (n - e)/(e + 1) is odd and A contains the all-I vec-

tor. Moreover, Xh (defined below) is odd for h = 0, 1, ... , e.

Pr~of. That e + 1 divides n - e follows from design considerations (see for example

[1], p. 250). There are (n - e)/(e + 1) code-vectors of weight d with lVs at e given places and

necessarily having no more common 1, s. The existence of these vectors comes from de-

sign conqiderations - see [ 1]. If (n - e)/(e + 1) is even, then the sum of all these vectors

is a vector of weight n - e; and every vector of weight n - e is in A. This is obviously

impossible. Hence (n - e)/(e + 1) is odd and the s--m is the all-1 vector.

The basic idea here is to use the characterizing property of perfect binary codes,

that the minimum-weight vectors form a tactical configuration of type 1; (e + 1) - d - n.

Then these vectors also form tactical configurations of type

h;h(-hd-n, forh= 0,1P ... , e

(e~~ + -h

Thus, for h = e, we get the result of the previous paragraph; for h = e - 1 we have

n-e+1 n-e eXe-l1 e +2 e+l1

and if we consider the Xe-1 code-vectors of weight d covering a given e - 1 places, we see

that each coordinate position outside the chosen (e - 1)-set is covered by exactly Xe of these
eevectors. Thus, since Xe is odd, if we add all these vectors we get all 1' s outside the

chosen (e - 1)-set, and by the same argument as in the previous case, we conclude that

e-1 is odd. Since

n -e+ 1
el e+2 "e

x is the number of minimum-weight vectors.
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it follows that n - e + 1 and e + 2 are exactly divisib!e by the same pcwer of 2. The same

conclusion holds for n - e + 2 and e + 3, for n - e + 3 and e + 4, ... , and for n and

2e+ 1.
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PART V

SECTION 2

ON A PROBLEM OF SEIDEL

We found the Proposition of this section in response to a question of J. J. Seidel. It

is related to the question whether his "t12881" graph [ 2] is strongly regular.

1. Definition of the Graph.

The Golay code consists of 4, 096 vectors of 24 coordinates over 0, 1. Aside from

the all-0 and all-i vectors, iR consists of 759 vectors of weight 8, 2576 of weight 12, and

759 of weight IC. Since the code is self-orthogonal under the usual inner product, any two

code-vectors must have an even number of 1' s in common positions with each other. It is

well known that the Mathieu group M2 4 is the automorphism group of the code.

The vertices of the graph are the code-vectors of weight 12. Two vertices are

joined by an edge if and only if they have exactly 6 common 1? s.

2. The Actiop of M2 4.

Let us call the code-vectors of weights 8 and 12 8-clubs and 12-clubs. An 8-club

and a 12-club meet in 0, 2, 4, or 6 points. Then there are 2576 12-clubs, and it happens

that (order of M24 ) + (order of M 12) = 2576. The stabilizer of a 12-club must therefore have

order at least that of M12 .

But inside a given 12-club there is a 5-6-12 Steiner system selected uniquely by the

code; i. e., we choose for each 5-set of coordinates in the 12-club the unique 8-club of the

code containing it; this 8-club must intersect the 12-club in 6 points, which make the 6-club

of the Steiner system we seek. Since now the stabilizer of the 12-club permutes all the

8-clubs, it is a group of automorphisms of the 5-6-12 Steiner system and hence has order

at most that of M12 . Therefore, M 12 is the stabilizer of a 12-club, and M is transitive

on the 12-clubs. In particular, we see that the graph is regular.

The 6-clubs of the 5-6-12 Steiner system are 132 in number, and the other 6-subsets

of the 12 points are 792 in number. These latter are the sets of intersection of two 12-clubs

meeting in six points, for such 6 points cannot be contained in an 8-club since the sum of the

two 12-clubs and the 8-club would be a code-vector of weight 20; and M is transitive on

the 132 6-clubs and on the 792 other 6-sets.
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Now consider the graph defined above. By the transitivity of M2 4 on the 12-clubs

and of M1 2 on the "non-club" 6-sets, any vertex and emanacing edge may be taken to a pre-
assigned vertex and to a preassigned non-club 6-set within it. The latter, however, gives
rise to two edges for the other two 12-clubs meeting the preassigncd one in exactly those

six points. Thus we have started with vertices X and Y joined by an edge, and have mapped
X to A and Y to B or C in the triangle ABC. In ABC the underlying 6-set S of intersection is
the same for every edge. Now, Todd [ 1] displays an element t of order 3 in M24 which fixes

S pointwise and is transitive in A. B. C. Thus, if (X, Y) goes to (A, B) we can operate with

t to send B to A and A to C, sending (X, Y) to (C, A). Thus

PROPOSITION. M is edge-transitive on the graph.

The valence of this graph is 2. 792.

Seidel' s actual concern is with his "1288" graph, obtained from the above graph by

; Iidentifying the vertex A with its complement A,, and four edges joining them to B, B' (if

one edge exists, all exist).
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PART V

SECTION 3

A CLASS OF (16k, 7k + 1) CODES FOR k ODD

Let A be an (8, 4) extended Hamming code, B its reverse. Thus, AnB = {0, all-i}, ,

A + B = all even-weight vectors. Now set

-• V = (A; Aý .... ; A); (B; B; ... ; B)

k-times k-times

where the semicolon ";" denotes juxtaposition of codes (external direct sum). Map V into i
16kGF(2) via

(a, ... , ak;b, ... ,bk) -(a + Zb Z b., b + Z •a;
Ii k 1 1 i 21 +

b2 + Z ai, ... ).

W#2

Clearly, dim V = 8k. We show that the kernel has dimension k - 1 and hence C = image
.i of V in GF(2) has dimensions 8k - (k - 1) = 7k + 1.

Ifa.+ 2 b.=(00 ... 0), theneithera.=0and Z b.=0ora.--all-i and Z b.=

all-1. Assume we have a representation of OeC with a1 = ar = all-1 and ar+...

ak = 0 . Let d(C) denote the minimum weight in C.

Case 1. rodd. Then it follows thatbr+i=b 2 =... =bk =all-landb=b 2 =...

- b =0. Since k is odd, k - r is even and hence a. =0 - a contradiction.
r1

Case 2. reven. Thenb 1 =b 2 =... =b r= a-landlr .. b k=all-1. Now
k - r is odd and we have a representation of 0. Thus, there are 0db + (i ) + k -1

(1/2) 2k = 2-1[ elements in the kernel and this proves our assertion. K
Fork= 1, C= A; B. Fork?-> 3, d(C) 5 8 since we can take a1 = 11010001,

b1= 11000101 a3 = b3 =all-l anda 2 = 3 +ala b2 b 3 +bl' Then we get

(a 1 +bl, a 2 +b 2 , 0, 0; a 1 +b, a2 + b2 , 0, ... , 0) which has weight 8. (Here

a. = b. = 0 for i> 3.)
1 1
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One checks easily that C is contained in its orthogonal. Since C has a generating

set consisting of vectors whose weights are = 0 (mod 4), C has all weights - 0 (mod 4).

Summary. For each odd k we have constructed a (16k, 7k + 1) binary code C con-

tained in its own orthogonal, having all weights divisible by 4, and containing vectors of

weight 8.
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PART Vt

JI

SECTION 4

THE TWO SELF-ORTHOGONAL (16, 8) CODES OVER GF(2) WHOSE
WEIGHTS ARE DIVISIBLE BY 4

The unique weight distribution for a code of the title is, by the MacWilliams

equations,

0 4 8 12 16

1 28 198 28 1

One such code, A, is the direct sum of two extended Har.,ming codes, (8, 4). Another, B,

is given by the row space of the following matrix, M:
O1 s1 00 00 00 00 00 00

11 00 11 00 00 00 00 00

11 00 00 11 00 00 00 00

11 00 00 00 00 00 00 11

10 10 10 10 10 10 10 10

These two codes ire obviously inequivalent because seven weight 4 vectors of A never

appear in the configuration shown in the matrix M.

We now show that any (16, 8) self-orthogonal code over GF(2) all of whose weights

are divisible by four is equivalent to either A or B. Suppose C is such a code. Theorem

4.2 of [ 11 shows that the vectors ef each weight class form a 1-design. Hence, given any

coordinate of C, there are seven weight 4 vectors with a 1 at that coordinate.

Suppose first they can be brought to the form of the first seven rows of the matrix
M; i. e., that they all share another coordinate where they are 1. The 7-dimensional

space they generate contains (')+ = 70 weight 8 vectors. Hence there are in C 128
further weight 8 vectors. Any one of these must have precisely one I in each of the eight

blocks of two displayed in the matrix M, for if it had two 1's in any block of two it would

have to have either no its Cr two l's in every other block and it would have already been
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PART V
SECTION 5i

A RESULT ON THE AUTOMORPHISM GROUP OF A 4-DESIGN CODE 1
Let A be an (n, k) code over a finite fieid F with d(A) L- 4. Suppose the minimum

weight vectors yield a 4-design with x2, x 3, x4 satisfying

x2 -2x3 + x 4 > 0

A2 1 x1

(conditions which are "always', satisfied). Then we claim that the invariance group of A

cannot contain a transposition.

To prove this claim, suppose (12)(3)(4) ... (n) is in the invariance group, i.e., there
is an invariance acting by the rule (a,, a2, ., an) a=

(a2a2 , ala1 , a3 a3 , ... ,aann)

The minimum weight vectors with a =a2= 0 yield a 2-design on {3, 4,..., n} whose x is

x2 - 2?3 + x 4 . This implies thata 3 =a 4 = ...a an for otherwise a - aa has weight less than

for some minimum weight a with a1  a . So we can assume a a4= ... =an1.

Since x2 , X,, we choose a minimal weight a with a1 =0, a2 #0. Then a - arhas weight

2 - a contradiction.

That is, every pair among 3, 4, ... , n is covered by x2 minimum weight vectors, of
which 2x3 - A4 cover one or two of h,1c spots 1, 2.
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PART V

SECTION 6

ON LINEAR CODES SUPPORTED BY STEINER TRIPLE SYSTEMS

1. Introduction.

Peyton Young conjectured to us at the Chapel Hill Conference in May, 1970 that there

are several t-designs for large t, in particular that there is a 1;9-10-20 design. If so,

then the contraction of that design is P SteiLner triple system on 13 points. If the design on

20 points arises as the support of all the vectors of weight 10 in some linear code, then the

analogue holds for the weight 3 vectors in the contracted code of length 13. These considera-

tions motivated our attempt to determine whether Steiner triple systems (hereinafter called

STS) can support codes. We record some results which :-ay be helpful in performing the

necessarily tedious calculations involved in this question.

An old and related result will serve as an example. There is a unique Steiner

system of type 1;3-5-17 (see [2], Satz 6) and it has the parameters to support a

perfect binary code, namely, 1;(e + 1) - d - n. But no such code exists. Therefore, this

Steiner system does not support any binary code.

A simpler example is the STS on seven points; it supports the well known Hamming

(7, 4) binary code.

The perfect (11, 6) ternary code of Golay has minimum distance 5. Thus, the

contraction of it to length 9 yields a code supported by the STS on nine points.

2. Calculations.

We consider a STS on the set S of n points. It is well known that n =- 1 or 3 (mod 6)

and that the number of triples is n(n - 1)/6.

Suppose A is a code over GF(q) of which the minimum weight vectors "are" the

triples of the STS. Since d -< n - k + 1 and the code is not optimal, we have k < n - 2.

Let Y be an m-subset of S, m -: 3, and yi the number of triples which meet Y in

exactly i spats; then one can easily verify that

m
z Yi x( s 0, 1, 2,
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where x0 is the total number of triples, xI is the number of triples covering one point,

1= (n - 1)/2, and 2 = 1. In our case the equations are

YO + Y + Y 2 + Y3 = n (n - 1)/6

y, + 2y 2 + 3Y3 = (n - 1)m/2

Y2 + 3Y3  m(m - 1)/2 (1)

Fiom now on, we take Y to be the support of a vector of weight m in the orthogonal

code A-. Then y1 must be 0, and (1) becomes

= (n - m)(n - m -1)

Y2= m (n - m)/2

Y3= m (2m - n - 1)/6 (2)

We assume Y0 > 0, and then the value of y0 in (2) implies that the triples contained
in the complement of Y form a Steiner triple system on n - m points, hence m :s n - 3.

The value for Y3 implies

n+ 1
In 2

and

m(2m - n - 1) = 0 (mod 6) (3)

Since n " 1, 3 (mod 6) and n - m , 1, 3 (mod 6) we consider casesv

Case nfl 1 (mod 6):

m(2m - 2) = 0 (6)

I - m -1, 3 (6)

or

m(m - 1) , 0 (3)

m -O, 4(6) (4)

And m s 0, 4 (mod 6) implies that m w0, 1 (mod 3).

Conclusion: if m is not n or n - 1, then n a! 1 (mod 6) implies m 0, 4 (mod 6).
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Case n = 3 (mod 6):

m(2m - 4) 0 (6)
3 - m -= I or 3 (6)

The second implies the first.

SConclusion: If m is not n or n - 1, then n 3 (mod 6) implies m 0, 2 (mod 6).

We now rewrite Y3 as

m(m- 1) m(n- m) (6)
Y3 = 6 6

-. and note that the number of 2-subsets of Y covered by the y3 triples of the system contained

in Y is

3y m(3 = +)

Notice that the values m = n, n- 1, n - 2 are settled in that n and n - I are possible weights

:1 { in an orthogonal code; but n - 2 is never possible, since such a vector could not annihilate

i , the triple covor).g its two 0-positions. Thus we treat the case m:5 n - 3.

We now look at the MacWilliams equations. Assume that the minimum weight in Al

is n- 3, which holds, for example, if the STS has no subsystems since if there were in Ai a

vector v of weight less than n- 3, every triple covering two of the O's of v would have its

ttird point also on one of the O's of v. Thus, triples ,on,, the O's of v would constitute a sub-

system. (We ignore the trivial STS on three points at the moment.)

REMARK 1. A-- has dimension 3 because it is not optimal and thus

n - (n-k) + I : n- 3

orn-k<4. Wealtreadyl kowk<n-2; hencek=n-3andn-k=3.

The equations are I] (Al- has weight distribution {BJ})

3
Bn- 3 + B +nBn =+q- 1

1
3 Bn_3+Bn1= z (n)V q S(I, v)-n

2 2 23(7)
3 Bn-3+ B 1  Z (n)vq VS( 2 , v) - n (7)

FR70-3N V- 13



Since xr rS(r, v)(x) , S(1, 0) = S(2, 0)= 0 and S(1, 1) =S(2, 1) =S(2, 2) =1. Thus
B-+ B +- B =--q 3_1

2
3B n_3+Bni =nq -n

32Bn.3 +Bn nq2 + n(n - 1)q - n2 (8)

These have the unique solution

6 Bn_3 = n(n - 1)(q - 1)

B%3 = n(n - 1)(q - 1)/6

Bn.1 = n(q - 1) - n(n - 1)(q - 1)/2

= n(q - 1)(q + I - (n - 1)/2) (9)

which implies in particular

n-3
q • 2--n . (10)

From (8', and (9) we then find

Bn3= q3 1-n(q- 1)[q-a 3 +n 6 1

or

nq 3_.. 1 -n(q -1)[q •- ] a(11_

We factor q - 1 oul'of (11) and regard what remains as a quadratic in q; it has discriminant

(n - 1) • (9 - n)/3. This means B is positive for n a 9. And, in general, we haven

Since we care only about n -= 1 or 3 (mod 6), we treat only n = 7 here (the cases n = 1

or 3 being too trivial to bother with). Then B7 /(q - 1) : (q - 3)2 - 1. 4!ich is 0 for q = 2 or 4,
-1 for q = 3, and positive for q - 5. In particular, then, we have shown that on suitable

change of scalars, the all-1 vector is in the orthogonal of every code sLapporting a STS

except that on r, points for q =2 or q =4; and we have shown that there is no code supporting

the 7-point STS over GF(3).
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A Check for Consistency. Equations (8) and (9) •r. ply, from the MacWilliams

relations, that the number of weight 3 and 4 vectors in A is:

A3  6 =, l) ( q 1)

A4  24 -1 )(n - 6)(n - 3) (12)
4 24

If the design comes from a larger design, there should be n(n - 1)(q - 1) n+2I1 1) 4-sets
(2-4 6,

present from the code, but there are many more. This difference is caused by the fact

that the weight 4's in the code don' t form a design since two weight 4's can occupy the

t Isame places without being scalar multiples of each other.

For the record we set down our finding that
A5=n(n - 1)(q -. 1) n3 92]

A-120 [q(n - 2)(n - 3)(n - 4) + n + 36n2 - 104n +96].
5 120
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PART V

SECTION 7

TWO SMALL REMARKS ON PACKING

The alternating group Alt(n) is evidently a dlstance-3 packag of n-space over n

symbolc with no symbols repeated in a word. The cardinality of tihe packing set is n! /2.

If n = q is a prime power, then we can define the Reed-Solomon code on n symbols
n-2 n-2

with 3 = d = n - k + 1 or k n - 2. Thi 3 code has cardinalityq = n , which is larger

than n!/2 if n 4.
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